Reinventing the Wheel

Jody Saultz
Applications Engineer

Reinventing the Wheel

- Background
- Methodology
- Test Results
- Conclusion

Advancement of Electronics

- Numerous cleaning process options for electronics manufacturers
- Focus of this study
 - Assess the cleaning effectiveness of precision cleaning spray technologies utilizing
 - Inline cleaner
 - Aqueous based cleaning agent

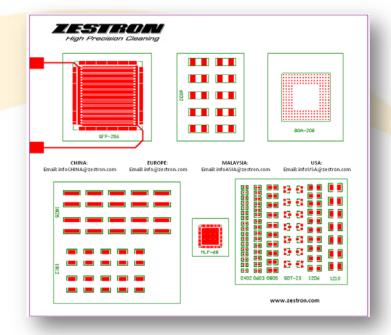
- Main energy sources of a cleaning system are:
 - Thermal energy
 - Impacted by the temperature of the cleaning media
 - Chemical energy
 - Impacted by the ability of the cleaning agent to solubilize the residues
 - Mechanical energy:
 - Impacted by effectiveness of the impingement force on the substrate surface
 - Dwell time

- Efficient cleaning system requires optimization of:
 - Thermal energy
 - Chemical energy
 - Mechanical energy
 - Critical to optimizing mechanical energy:
 - Spray manifold design and configuration
 - Spray nozzle type and quantity

- Inline cleaners include:
 - Pre wash
 - Wash section
 - Chemical Isolation
 - Rinse & Final rinse
 - Dry
- Mechanical energy impacts the pre wash and wash sections
- Study focus:
 - Influence of spray bar configuration, nozzle design and utilization on cleaning efficiency

- Four (4) spray nozzle technology methods were evaluated
 - Spray Under Immersion (SUI)
 - High Volume V-Jet Nozzles (HVVJ)
 - Standard Intermix Nozzles (SI)
 - Intermix High Volume Nozzles (IHV)

- Evaluation methodology:
 - Utilized populated ZESTRON® Test Vehicle
 - Three pastes types considered
 - Paste A: Water Soluble
 - Paste B: No-clean
 - Paste C: RMA
- All pastes reflowed per manufacturer recommended profile


- Components used per test vehicle: 5 each type
- Total components per test vehicle: 45

Component Types Used									
1825	1812	0402							
0603	0805	SOT-23							
1206	1210	6032							

Populated test vehicle

Inline cleaner operating parameters

Cleaning agent type:	Aqueous based micro phase
Fixed Parameters:	
Concentration:	15%
Wash temperature:	140° F
Variable Parameters:	
Dwell time (SUI – RMA, No-Clean):	10 minutes / 5 minutes
Dwell time (SUI - Water Soluble):	2 minutes / 1.66 minutes
Dwell time (spray in air - RMA & No Clean):	5.3 min minutes / 2.45 minutes
Dwell Time (Spray in air - Water Soluble)	1.06 minutes / 0.55 minutes

- Two (2) test vehicles were cleaned at each belt speed
- Cleanliness assessment evaluation conducted by:
 - Visual inspection
 - Components mechanically removed for undercomponent inspection
 - Cleanliness assessment per IPC 61
- Ion Chromatography Analysis
 - Per IPC-TM-650 2.3.28

Spray Technology and nozzle method

details

Configuration type	Туре
Standard Intermix	
Top spray bar	4 V-Jet Bars 4 JIC Bars
Bottom Spray Bar	4 V-Jet Bars
Intermix High Volume	
Top spray bar	4 V-Jet Bars 4 JIC Bars
Bottom Spray Bar	4 V-Jet Bars

Spray bar and nozzle design details

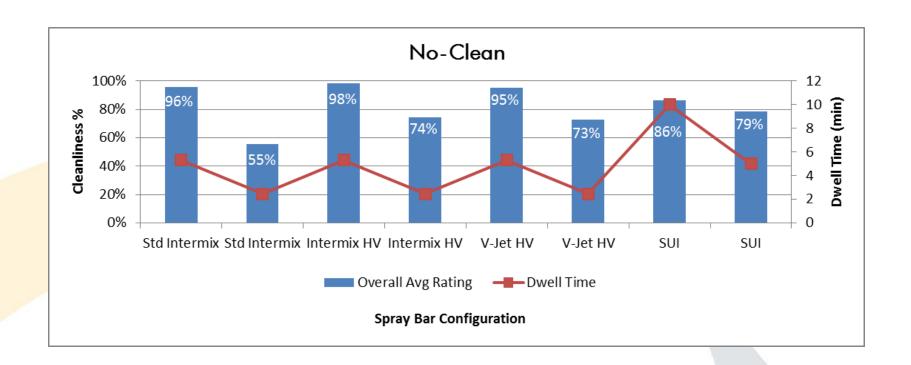
Configuration type	Туре
High Volume V-Jet	
Top spray bar	8 V-Jet Bars
Bottom Spray Bar	4 V-Jet Bars
Spray under immersion	
Top spray bar	8 V-Jet Bars
Bottom Spray Bar	4 V-Jet Bars
Immersion bath	1 " liquid height/conveyor .375

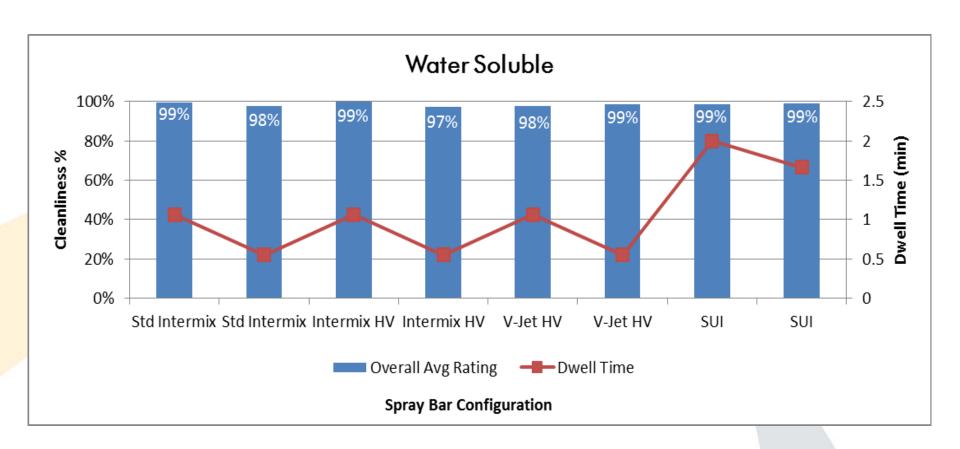
Spray bar and nozzle design details

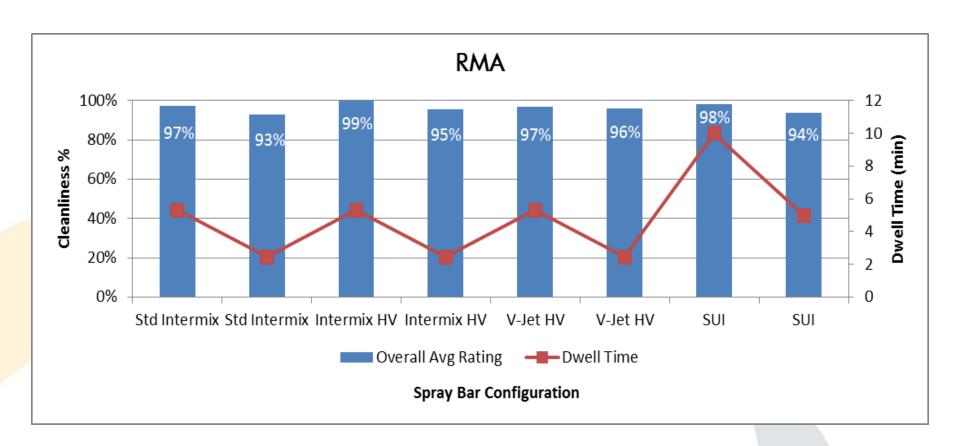

Configuration	Pre Wash Upper Pressure (PSI)	Pre Wash Lower Pressure (PSI)	Wash Upper Pressure (PSI)	Wash Lower Pressure (PSI)
Standard Intermix	55	45	70	45
Intermix High Volume	55	45	70	45
High Volume V-Jet	55	45	60	40
Spray Under Immersion	55	45	60	40

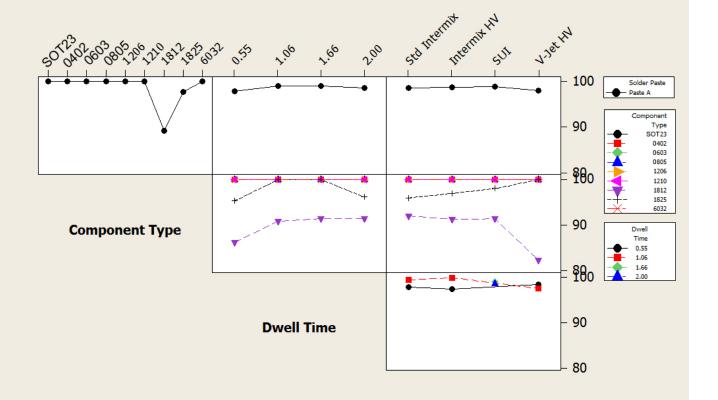
Standard and High Volume Intermix

High volume V-Jet


Spray Under Immersion

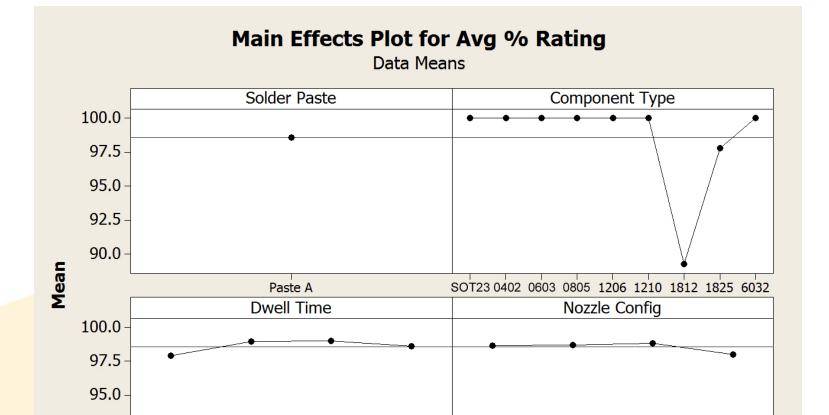






Interaction Plot for Avg % Rating

Data Means


Solder Paste

Nozzle Config

2.00

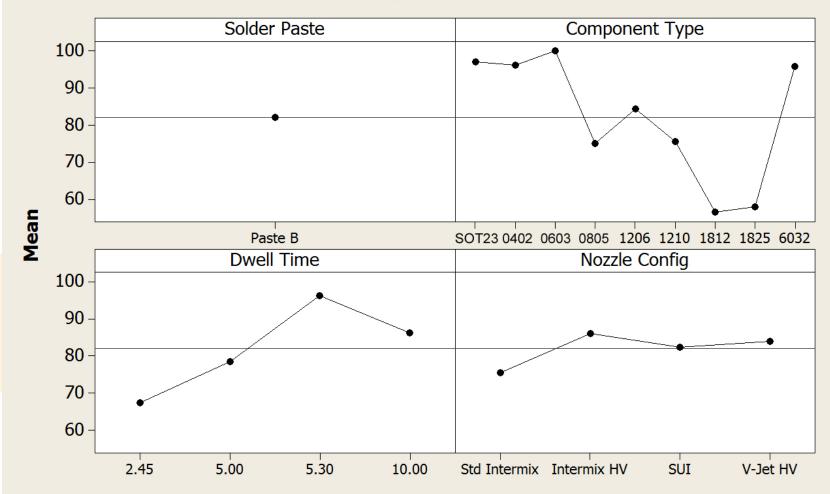
Std Intermix Intermix HV

SUI

1.66

V-Jet HV

92.5

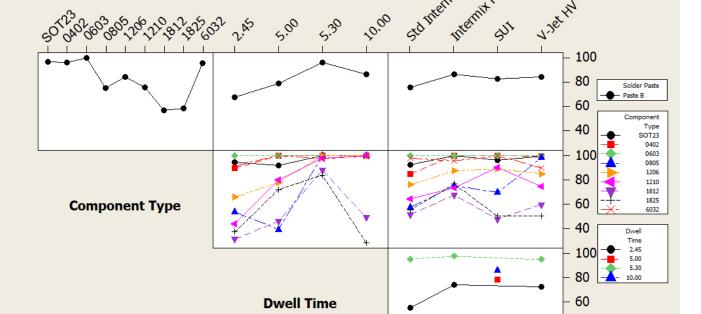

90.0 -

0.55

1.06

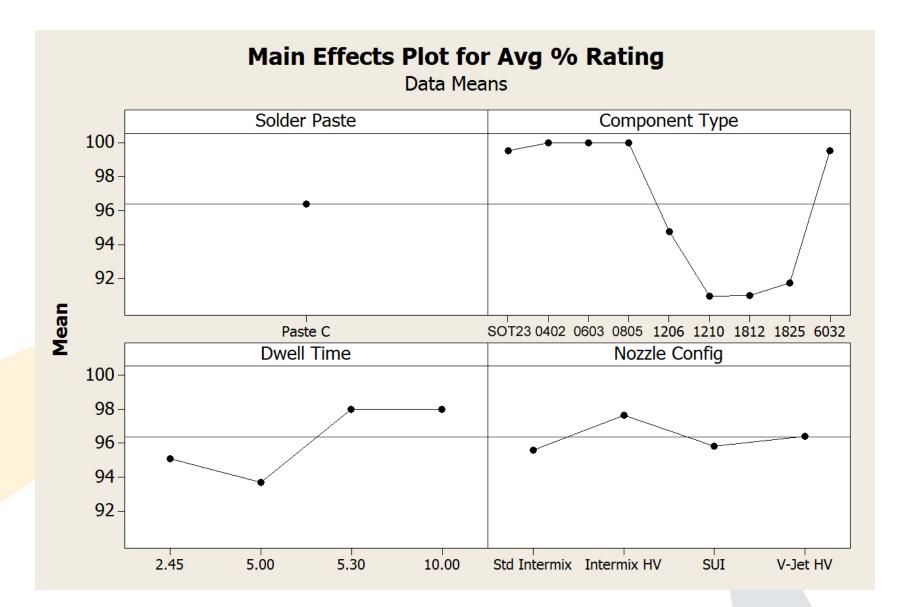
Main Effects Plot for Avg % Rating

Data Means



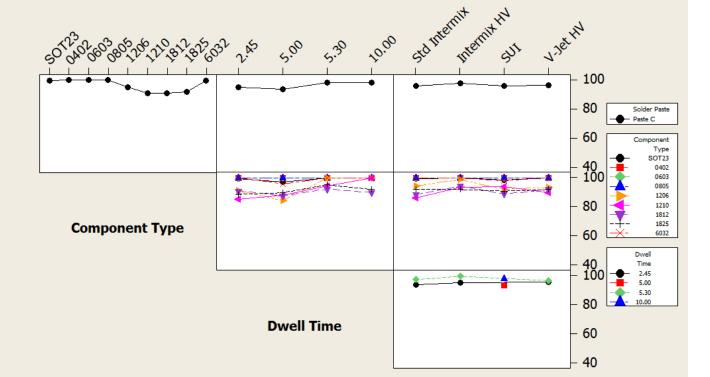
Interaction Plot for Avg % Rating

Data Means


Nozzle Config

40

Solder Paste



Interaction Plot for Avg % Rating

Data Means

Nozzle Config

Solder Paste

- Visual inspection results:
- No clean
 - Best results at 5 min dwell:
 - Intermix high volume: 98%
 - Standard Intermix: 96%
 - V-Jet HV: 95%
 - SUI achieved 86% required 10 min dwell

- Visual inspection results:
- RMA
 - Best results at 5 min dwell:
 - Intermix high volume: 99%
 - Standard Intermix: 97%
 - V-Jet HV: 97%
 - SUI achieved 98% required 10 min dwell

- Visual inspection results:
- Water Soluble
 - Best results at 0.55 min dwell:
 - V-Jet HV: 99%
 - Best results at 1.06 min dwell
 - Intermix high volume: 99%
 - Standard Intermix: 97%
 - SUI achieved 99% required 2 min dwell

 Ion Chromatography Analysis: Leadfree, No Clean

Anion Species (µg/in²)										
	Maximum				Dwell Tim	e (min) / N	ozzle			
Ionic Species	Contamination Levels	5.3 / HVVJ	2.45 /HVVJ	10 / SUI	5 / SUI	5.3 / SI	2.45 / SI	5.3 / IHV	2.45 / IHV	
Fluoride (F ⁻)	3	0.1001	0.0351	0.0472	ND	0.0615	0.0451	0.0964	0.0882	
Acetate (C ₂ H ₂ O ⁻ ₂)	3	ND	ND	ND	ND	ND	ND	ND	ND	
Formate (CH ₂ O ⁻ ₂)	3	0.1719	ND	0.5733	ND	0.4883	0.1809	0.5802	0.2883	
Chloride (Cl ⁻)	4	0.0855	0.095	0.1877	0.239	0.1861	0.1026	0.1163	0.1068	
Nitrite (NO ₂ -)	3	0.5136	0.4307	0.4559	0.6196	0.6103	0.5827	0.7383	0.6554	
Bromide (Br ⁻)	10	1.9635	ND	ND	ND	ND	ND	ND	1.9272	
Nitrate (NO ₃ -)	3	ND	1.5343	1.3299	1.496	1.6405	1.2496	1.2785	ND	
Phosphate (PO ₄ ²⁻)	3	ND	ND	ND	ND	ND	ND	ND	ND	
Sulfate (SO ₄ ²⁻)	3	ND	ND	ND	ND	ND	ND	ND	ND	
WOA (Weak Organic Acid)(MSA)	25	ND	ND	ND	0.336	ND	ND	ND	ND	

 Ion Chromatography Analysis: Leadfree, No Clean

Cation Species (µg/in²)													
Ionic Species	Maximum Contamination	Dwell Time (min) / Nozzle											
	Levels	5.3 / HVVJ	2.45 /HVVJ	10 / SUI	5 / SUI	5.3 / SI	2.45 / SI	5.3 / IHV	2.45 / IHV				
Lithium (Li ⁺)	3	ND	ND	ND	ND	ND	ND	ND	ND				
Sodium (Na⁺)	3	0	0	0	0	0	0	0	0				
Ammonium (NH ₄ ⁺)	3	0.3911	0.3612	0.3979	0.3354	0.3468	0.573	0.3620	0.3321				
Potassium (K⁺)	3	0	0	0	0	0	0	0	0				
Magnesium (Mg ²⁺)	1	ND	ND	ND	ND	ND	ND	ND	ND				
Calcium (Ca ²⁺)	1	ND	ND	ND	ND	ND	ND	ND	ND				

 Ion Chromatography Analysis: Leadfree, RMA

	Anion Species (μg/in²)									
		Maximum			[Owell Time	(min) / Nozz	le		
	Ionic Species	Contamination Levels	5.3 / SI	2.45 / SI	5.3 / IHV	2.45 / IHV	5.3 / HVVJ	2.45 / HVVJ	10 / SUI	5 / SUI
	Fluoride (F ⁻)	3	ND	0.0059	0.0304	ND	ND	0.0502	0.0615	0.0719
	Acetate (C ₂ H ₂ O ⁻ ₂)	3	ND	ND	ND	ND	0.404	ND	ND	ND
	Formate (CH ₂ O ⁻ 2)	3	0.2707	ND	ND	0.0869	ND	ND	ND	0.3973
	Chloride (Cl ⁻)	4	0.0044	0.0429	0.0441	0.0316	0.0332	0.0062	0.0414	0.0473
	Nitrite (NO ₂ -)	3	0.3127	0.3015	0.4234	0.3002	0.4266	0.3226	0.3791	0.2674
	Bromide (Br ⁻)	10	2.2608	2.2178	2.0314	1.9723	1.9866	1.7267	1.5558	1.9785
	Nitrate (NO ₃ -)	3	ND	ND	ND	ND	ND	ND	ND	ND
	Phosphate (PO ₄ ²⁻)	3	ND	ND	ND	ND	ND	ND	ND	ND
	Sulfate (SO ₄ ²⁻)	3	ND	ND	ND	ND	ND	ND	ND	ND
(WOA (Weak Organic Acid)(MSA)	25	ND	0.2214	0.2067	0.336	0.0648	ND	0.8593	ND

 Ion Chromatography Analysis: Leadfree, RMA

Cation	Species	(ua/in²)
Cation	Opecies	(Mg/III)

Ionic Species	Maximum Contamination	Contamination Dwell Tillie (IIIII) / NO22le								
	Levels	5.3 / SI	2.45 / SI	5.3 / IHV	2.45 / IHV	5.3 / HVVJ	2.45 / HVVJ	10 / SUI	5 / SUI	
Lithium (Li ⁺)	3	ND	ND	ND	ND	ND	ND	ND	ND	
Sodium (Na ⁺)	3	0.0502	0.1105	0.0323	0	0	0	0	0.1148	
Ammonium (NH₄⁺)	3	0.8365	0.7631	0.8239	0.8975	0.752	1.1694	1.2491	1.239	
Potassium (K ⁺)	3	0	0	0.072	0	0	0	0	0	
Magnesium (Mg ²⁺)	1	ND	ND	ND	ND	ND	ND	ND	ND	
Calcium (Ca ²⁺)	1	ND	ND	ND	ND	ND	ND	ND	ND	

 Ion Chromatography Analysis: Leadfree, Water Soluble

Anion Species (μg/in²)											
Ionio Cuosico	Maximum	Dwell Time (min) / Nozzle									
Ionic Species	Contamination Levels	1.06 / SI	0.55 / SI	1.06 / IHV	0.55 / IHV	1.06 / HVVJ	0.55 / HVVJ	2 / SUI	1.66 / SUI		
Fluoride (F ⁻)	3	0.0141	0.1122	0.0204	0.0151	0.0583	0.0282	0.0474	0.0153		
Acetate (C ₂ H ₂ O ⁻ ₂)	3	ND	1.8145	ND	ND	ND	ND	ND	ND		
Formate (CH ₂ O ⁻ 2)	3	0.2973	0.0955	0.2051	0.4298	0.1856	0.1286	0.2874	0.5154		
Chloride (Cl ⁻)	4	ND	ND	ND	ND	ND	ND	ND	ND		
Nitrite (NO ₂ -)	3	0	0	0	0	0	0	0	0		
Bromide (Br ⁻)	10	0.3947	0.3472	0.3018	1.2257	1.2286	0.9655	0.4687	1.1503		
Nitrate (NO ₃ -)	3	0.3856	0.5032	0.5069	ND	ND	ND	ND	ND		
Phosphate (PO ₄ ²⁻)	3	ND	ND	ND	ND	ND	ND	ND	ND		
Sulfate (SO ₄ ² -)	3	ND	ND	ND	ND	ND	ND	ND	ND		
WOA (Weak Organic Acid)(MSA)	25	ND	ND	ND	ND	ND	ND	ND	ND :		

 Ion Chromatography Analysis: Leadfree, Water Soluble

Cation	Species	(ua/in ²)
Calibri	ohecies.	(µg/111)

Ionic Species	Maximum Contamination Levels	Dwell Time (min) / Nozzle							
		1.06 / SI	0.55 / SI	1.06 / IHV	0.55 / IHV	1.06 / HVVJ	0.55 / HVVJ	2 / SUI	1.66 / SUI
Lithium (Li ⁺)	3	ND	ND	ND	ND	ND	ND	ND	ND
Sodium (Na⁺)	3	0.0497	0.0238	0.0521	0.0271	0.0104	0.0552	0.0477	0.0081
Ammonium (NH₄⁺)	3	1.2615	1.3633	1.1063	1.2014	1.2762	1.3897	1.3055	1.0912
Potassium (K ⁺)	3	0.23	0.1711	0.3385	0.1983	0.2181	0.3142	0.1772	0.1622
Magnesium (Mg ²⁺)	1	ND	ND	ND	ND	ND	ND	ND	ND
Calcium (Ca ²⁺)	1	ND	ND	ND	ND	ND	ND	ND	ND

Conclusion

- Spray bar configuration and nozzle design and utilization impacts mechanical energy generated
- Water soluble residue is easiest to clean followed by RMA and No Clean
- Intermix high volume nozzles provided the best overall cleaning result

Conclusion

- Lead-Free flux no-clean flux residues are harder to clean
- Cleaning agent that matches up with the residue is critically important
- Mechanical Energy is critically important
 - Most component gaps are filled with flux residue
 - Deflective energies are needed to move the cleaning agent to soil
 - Break through will be required to create a flow channel
 - Longer wash (dwell) times will be required

Reinventing the Wheel

Questions?

